Method for bias field correction of brain T1-weighted magnetic resonance images minimizing segmentation error.
نویسندگان
چکیده
This work presents a new algorithm (nonuniform intensity correction; NIC) for correction of intensity inhomogeneities in T1-weighted magnetic resonance (MR) images. The bias field and a bias-free image are obtained through an iterative process that uses brain tissue segmentation. The algorithm was validated by means of realistic phantom images and a set of 24 real images. The first evaluation phase was based on a public domain phantom dataset, used previously to assess bias field correction algorithms. NIC performed similar to previously described methods in removing the bias field from phantom images, without introduction of degradation in the absence of intensity inhomogeneity. The real image dataset was used to compare the performance of this new algorithm to that of other widely used methods (N3, SPM'99, and SPM2). This dataset included both low and high bias field images from two different MR scanners of low (0.5 T) and medium (1.5 T) static fields. Using standard quality criteria for determining the goodness of the different methods, NIC achieved the best results, correcting the images of the real MR dataset, enabling its systematic use in images from both low and medium static field MR scanners. A limitation of our method is that it might fail if the bias field is so high that the initial histogram does not show bimodal distribution for white and gray matter.
منابع مشابه
Quantitative Comparison of SPM, FSL, and Brainsuite for Brain MR Image Segmentation
Background: Accurate brain tissue segmentation from magnetic resonance (MR) images is an important step in analysis of cerebral images. There are software packages which are used for brain segmentation. These packages usually contain a set of skull stripping, intensity non-uniformity (bias) correction and segmentation routines. Thus, assessment of the quality of the segmented gray matter (GM), ...
متن کاملSegmentation of Magnetic Resonance Brain Imaging Based on Graph Theory
Introduction: Segmentation of brain images especially from magnetic resonance imaging (MRI) is an essential requirement in medical imaging since the tissues, edges, and boundaries between them are ambiguous and difficult to detect, due to the proximity of the brightness levels of the images. Material and Methods: In this paper, the graph-base...
متن کاملImproving Brain Magnetic Resonance Image (MRI) Segmentation via a Novel Algorithm based on Genetic and Regional Growth
Background:Â Regarding the importance of right diagnosis in medical applications, various methods have been exploited for processing medical images solar. The method of segmentation is used to analyze anal to miscall structures in medical imaging.Objective:Â This study describes a new method for brain Magnetic Resonance Image (MRI) segmentation via a novel algorithm based on genetic and regiona...
متن کاملComparison of state-of-the-art atlas-based bone segmentation approaches from brain MR images for MR-only radiation planning and PET/MR attenuation correction
Introduction: Magnetic Resonance (MR) imaging has emerged as a valuable tool in radiation treatment (RT) planning as well as Positron Emission Tomography (PET) imaging owing to its superior soft-tissue contrast. Due to the fact that there is no direct transformation from voxel intensity in MR images into electron density, itchr('39')s crucial to generate a pseudo-CT (Computed Tomography) image ...
متن کاملA RVR-based Method for Bias Field Estimation in Brain Magnetic Resonance Images Segmentation
This paper presents a relevance vector regression (RVR) based parametric approach to the bias field estimation in brain magnetic resonance (MR) image segmentation. Segmentation is a very important and challenging task in brain analysis, while the bias field existed in the images can significantly deteriorate the performance. Most of current parametric bias field correction techniques use a pre-...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Human brain mapping
دوره 22 2 شماره
صفحات -
تاریخ انتشار 2004